2023, Volume 11
2022, Volume 10
2021, Volume 9
2020, Volume 8
2019, Volume 7
2018, Volume 6
2017, Volume 5
2016, Volume 4
2015, Volume 3
2014, Volume 2
2013, Volume 1
Department of Aerospace Engineering, Alliance University, Bangalore, India
The Ice Giants may become a sought-after destination in the coming decades as researchers aim to have a better awareness of our Solar system- its origins and growth. The interplanetary trajectory optimization is an important aspect of the analysis of a mission to Uranus. This study investigates possible interplanetary paths to Uranus in the 2022-2030 timeframe. It provides a preliminary estimate of fuel consumption in units of ΔV for various mission durations. A variety of approaches can be used to travel from Earth to another planet. It is conceivable to use a direct transfer route with two engine burns, one at a parking orbit around the Earth and the other to capture around the target planet. This article emphasizes a direct transfer trajectory analysis towards Uranus using Lambert’s problem. Different lambert arcs were considered for the direct transfer. Variations of excess velocities at arrival and departure for various time-of-flight were obtained. The ceiling of the time-of-flight was fixed as 16.5 years by performing a Hohmann transfer. The minimum ΔV was obtained for various time-of-flight ranging from 8.5 years to 16.5 years. The ideal ΔV obtained during the fixed timeframe lies between 6.87 km/s and 7.98 km/s. The minimum value of ΔV was observed for the time-of-flight of 13.5 years.
Direct Transfer Trajectory, Lambert’s Problem, Patched-Conic Method, Earth-Uranus Mission, Optimal Delta-V, Interplanetary Mission
Gisa Geoson Suseela, Yadu Krishnan Sukumarapillai, Hariprasad Thimmegowda, Pavan Kalyan Devaiah, Manjunath Nagendra, et al. (2022). Analysis of Earth-Uranus Direct-Transfer Trajectory for Optimal Delta-V Using Lambert’s Problem. International Journal of Astrophysics and Space Science, 10(1), 9-17. https://doi.org/10.11648/j.ijass.20221001.12
Copyright © 2022 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
1. | J. Mansell, N. Kolencherry, K. Hughes, A. Arora, H. S. Chye, K. Coleman, J. Elliott, S. Fulton, N. Hobar, B. Libben, Y. Lu, J. Millane, A. Mudek, L. Podesta, J. Pouplin, E. Shibata, G. Smith, B. Tackett, T. Ukai, P. Witsberger, S. Saikia, Oceanus: A multi-spacecraft flagship mission concept to explore Saturn and Uranus, Advances in Space Research, Volume 59, Issue 9, 2017. |
2. | Sayanagi, K. M., Dillman, R. A., Atkinson, D. H., Li, J., Saikia, S., Simon, A. A., & Tran, L. D. (2020). Small next-generation atmospheric probe (SNAP) concept to enable future multi-probe missions: a case study for Uranus. Space Science Reviews, 216 (4), 1-47. |
3. | S. Jarmak, E. Leonard, A. Akins, E. Dahl, D. R. Cremons, S. Cofield, A. Curtis, C. Dong, E. T. Dunham, B. Journaux, D. Murakami, W. Ng, M. Piquette, A. Pradeepkumar Girija, K. Rink, L. Schurmeier, N. Stein, N. Tallarida, M. Telus, L. Lowes, C. Budney, K. L. Mitchell, QUEST: A New Frontiers Uranus orbiter mission concept study, Acta Astronautica, Volume 170, 2020. |
4. | Vasile, M., Martin, J. M. R., Masi, L., Minisci, E., Epenoy, R., Martinot, V., & Baig, J. F. (2015). Incremental planning of multi-gravity assists trajectories. Acta Astronautica, 115, 407-421. |
5. | Biesbroek, R. (2016). Lunar and Interplanetary Trajectories. Springer International Publishing. |
6. | Yam, C. H., Troy McConaghy, T., Joseph Chen, K., & Longuski, J. M. (2004). Design of low-thrust gravity-assist trajectories to the outer planets. In 55th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law (pp. A-6). |
7. | Hughes, K. M. (2016). Gravity-assist trajectories to Venus, Mars, and the ice giants: Mission design with human and robotic applications (Doctoral dissertation, Purdue University). |
8. | Longuski, J. M., & Williams, S. N. (1991). Automated design of gravity-assist trajectories to Mars and the outer planets. Celestial Mechanics and Dynamical Astronomy, 52 (3), 207-220. |
9. | Zuo, M., Dai, G., Peng, L., Wang, M., Liu, Z., & Chen, C. (2020). A case learning-based differential evolution algorithm for global optimization of interplanetary trajectory design. Applied Soft Computing, 94, 106451. |
10. | Fritz, S., & Turkoglu, K. (2016, March). Optimal trajectory determination and mission design for asteroid/deep space exploration via multi-body gravity assist maneuvers. In 2016 IEEE Aerospace Conference (pp. 1-9). IEEE. |
11. | Hughes, S. P., Qureshi, R. H., Cooley, S. D., & Parker, J. J. (2014). Verification and validation of the general mission analysis tool (GMAT). In AIAA/AAS astrodynamics specialist conference (p. 4151). |
12. | Paulino, T. (2008). Analytical representations of low-thrust trajectories. |
13. | Sena, Francesco & D'Ambrosio, Andrea & Curti, Fabio. (2021). “Study on Interplanetary Trajectories towards Uranus and Neptune.’ Conference: 31st AAS/AIAA Space Flight Mechanics Meeting, Virtual. |
14. | Sims, J., Finlayson, P., Rinderle, E., Vavrina, M., & Kowalkowski, T. (2006, August). Implementation of a low-thrust trajectory optimization algorithm for preliminary design. In AIAA/AAS Astrodynamics specialist conference and exhibit (p. 6746). |
15. | Evans, S., Taber, W., Drain, T., Smith, J., Wu, H. C., Guevara, M., & Evans, J. (2018). MONTE: The next generation of mission design and navigation software. CEAS Space Journal, 10 (1), 79-86. |
16. | Iorfida, E. (2016). On the characteristics of optimal transfers. University of Surrey (United Kingdom). |
17. | Woo, B., Coverstone, V. L., & Cupples, M. (2006). Low-thrust trajectory optimization procedure for gravity-assist, outer-planet missions. Journal of Spacecraft and Rockets, 43 (1), 121-129. |
18. | Torla, J., & Peet, M. (2019). Optimization of low fuel and time-critical interplanetary transfers using space elevator apex anchor release: Mars, Jupiter and Saturn. In Proceedings of the International Astronautical Congress, IAC (Vol. 2019, pp. IAC-19_D4_3_4_x51420). International Astronautical Federation, IAF. |
19. | Tang, S., & Conway, B. A. (1995). Optimization of low-thrust interplanetary trajectories using collocation and nonlinear programming. Journal of Guidance, Control, and Dynamics, 18 (3), 599604. |
20. | Darani, S. A., & Abdelkhalik, O. (2018). Space trajectory optimization using hidden genes genetic algorithms. Journal of Spacecraft and Rockets, 55 (3), 764-774. |
21. | Parvathi, S. P., & Ramanan, R. V. (2016). Iterative pseudostate method for transfer trajectory design of interplanetary orbiter missions. Journal of Guidance, Control, and Dynamics, 39 (12), 2799-2809. |
22. | Hargraves, C. R., & Paris, S. W. (1987). Direct trajectory optimization using nonlinear programming and collocation. Journal of guidance, control, and dynamics, 10 (4), 338-342. |
23. | Dachwald, B. (2004). Optimization of interplanetary solar sailcraft trajectories using evolutionary neurocentral. Journal of Guidance, Control, and Dynamics, 27 (1), 66-72. |
24. | Dachwald, B. (2004). Low-thrust trajectory optimization and interplanetary mission analysis using evolutionary neurocontrol. Doktorarbeit, Institut für Raumfahrttechnik, Universität der Bundeswehr, München. |
25. | Molenaar, S. (2009). Optimization of interplanetary trajectories with deep space maneuvers-model development and application to a Uranus orbiter mission. |
26. | Morante, D., Sanjurjo Rivo, M., & Soler, M. (2021). A survey on low-thrust trajectory optimization approaches. Aerospace, 8 (3), 88. |
27. | Parvathi, S. P., & Ramanan, R. V. (2017). Direct transfer trajectory design options for interplanetary orbiter missions using an iterative patched conic method. Advances in Space Research, 59 (7), 1763-1774. |
28. | Standish, E. M., & Williams, J. G. (1992). Orbital ephemerides of the Sun, Moon, and planets. Explanatory supplement to the astronomical almanac, 279-323. |
29. | Howard D. Curtis, Orbital Mechanics for Engineering Students (Third Edition), Butterworth-Heinemann, 2014. |
30. | Iwabuchi, M., Satoh, S., & Yamada, K. (2021). Smooth and continuous interplanetary trajectory design of spacecraft using iterative patched-conic method. Acta Astronautica, 185, 58-69. |