International Journal of Astrophysics and Space Science

Submit a Manuscript

Publishing with us to make your research visible to the widest possible audience.

Propose a Special Issue

Building a community of authors and readers to discuss the latest research and develop new ideas.

Effects of Spin Properties on Braking Indices of 208 Glitching Pulsars

Pulsars are stars that emit electromagnetic radiation in a definite time interval. Detailed study of the long-term timing observations of pulsars indicate that the predictable smooth spin- down of pulsars is predisposed to discrete fluctuations known as glitch. The rotation frequency of pulsars decays with time as quantified by the braking index (n). The braking indices have been known to have no consequence on the quantities like obliquity angle evolution or complex high-order multipole structure but on the spin properties of the pulsars. In the canonical model of the theory of braking indices, n = 3 for all pulsars, but observational information has shown that n ≠ 3, indicating that the canonical model requires reconsideration. Using the Australian Telescope National Facility (ATNF) pulsar catalogue, we selected 208 pulsars with 670 glitches and used the distributions of the spin properties to statistically investigate their effects on the braking indices. We computed the braking indices of these pulsars using the theoretical method and observed that the braking index is much smaller for very young pulsars (104-107) which have been observed to show more glitch activity than their old, stable counterparts. A simple regression analysis of our data show that spin properties of pulsar are more than 65% correlated with the magnitude of pulsar braking index. The implications of the spin properties on braking indices on long timescales are discussed.

Pulsars, Braking Index, Glitches: Spin-Properties, Methods: Statistical - Regression Analysis

APA Style

Juliana Nwakaego Odo, Azubuike Christian Ugwoke. (2023). Effects of Spin Properties on Braking Indices of 208 Glitching Pulsars. International Journal of Astrophysics and Space Science, 11(1), 7-14. https://doi.org/10.11648/j.ijass.20231101.12

ACS Style

Juliana Nwakaego Odo; Azubuike Christian Ugwoke. Effects of Spin Properties on Braking Indices of 208 Glitching Pulsars. Int. J. Astrophys. Space Sci. 2023, 11(1), 7-14. doi: 10.11648/j.ijass.20231101.12

AMA Style

Juliana Nwakaego Odo, Azubuike Christian Ugwoke. Effects of Spin Properties on Braking Indices of 208 Glitching Pulsars. Int J Astrophys Space Sci. 2023;11(1):7-14. doi: 10.11648/j.ijass.20231101.12

Copyright © 2023 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Kaspi, V. M., and Helfand, D. J., Constraining the Birth Events of Neutron Stars. ASP Conference Series, 9999, 2002, P. O. Slane and B. M. Gaensler, ed.
2. Lorimer, D. R. and Kramar, M. (2005) Handbook of Pulsar Astronomy. Cambridge University Press, Cambridge.
3. Lyne, A. G., Graham-Smith, F., 2005, Pulsar Astronomy, Cambridge, UK: Cambridge University Press, 2005.
4. Lyne, A. G., Hobbs, G., Kramer, M. and Stairs, B. (2010) Switched Magnetospheric Regulation of Pulsar Spin-Down. Science, 329, 408-412.
5. Bell-Burnell, S. J. (1977). Petit Four. Annals of the New York Academy of Sciences, 302, 685 https://doi.org/10.1111/j.1749-6632.1977.tb37085.x.
6. Kramer, M., Lyne, A. G., O’Brien, J. T., Jordan, C. A. and Lorimer, D. R. (2006). Periodically Active Pulsar Giving Insight into Magnetospheric Physics. Science, 312, 549-551. https://doi.org/10.1126/science.1124060.
7. Cameron, A. D., Champion, D. J., Kramer, M., Bailes, M., Barr, E. D., Bassa, C. G., et al. (2018) The High Timing Resolution Universe Pulsar Survey-XIII. PSR J1757-1854, the Most Accelerated Binary Pulsar. Mont. Not. of the Royal Astron. Soci. Letters, 475, L57-L61. https://doi.org/10.1093/mnrasl/sly003.
8. Stovall K., Freire, P, Chatterjee, P., et al., (2018). PALFA discovery of a highly relativistic double neutron star binary. Astrophysical Journal Letters. 854 (2), L22 https://doi.org/10.3847/2041-8213/aaad06.
9. Shannon, R. M., Ravi, V., Lentati, L. T., Lasky, P. D., Hobbs, G., Kerr, M., et al. (2015). Gravitational Waves from Binary Supermassive Blackhole Missing in Pulsar Observations. Science, 349, 1522-1525. https://doi.org/10.1126/science.aab1910
10. Arzoumanian, Z., Baker, P. T., Brazier, A., Burke-Spolaor, S., Chamberlin, S. J., Chatterjee, S., et al. (2018) The NANOGrav 11 Year Dataset: Pulsar Timing Constraints on the Stochastic Gravitational Wave Background. Astrophysical Journal. 859, 47. https://doi.org/10.3847/1538-4357/aabd3b
11. Lyne, A. G., Shemar, S. L., and Graham Smith, F. Statistical Studies of Pulsar glitches. Mon. Not. R. Astron. Soc., 315, 2000, 534–542.
12. Hobbs, G., Coles, W., Manchester, R. N., Keith, M. J., Shannon, R. M., Chen, D., Bailes, M., Bhat, N. D. R., BurkeSpolaor, S., Champion, D. et al. Development of a Pulsar-based Timescale. Mon. Not. R. Astron. Soc., 427, 2012, 2780.
13. Espinoza, C. M., Lyne, A. G., Stappers, B. W. and Kramer, M. A study of 315 glitches in the rotation of 102 pulsars. Mon. Not. R. Astron. Soc., 414, 2011, 1679-1704.
14. Flanagan, C. S. (1995) Unpublished Ph.D Thesis, Rhodes University of Grahamstown, South Africa.
15. Urama, J. O. (2002) Glitch Monitoring in PSR B1046-58 and B1737-30. Mont. Not. of the Royal Astro. Soc., 330, 58- 62. https://doi.org/10.1046/j.1365-8711.2002.05099.x.
16. Chukwude, A. E., Urama, S. O. (2010). Observations of Microglitches in Hartebeesthoek Radio Astronomy Observatory Radio Pulsars. Mont. Not. of the Royal Astron. Soci., 406, 1907-1917. https://doi.org/10.1111/j.1365- 2966.2010.16789.x.
17. Manchester, R. N. and Taylor, J. H. (1977). Pulsars. W. H. Freeman and Company, San Francisco.
18. Melatos, A. (1997). Monthly Notices of Royal Astronomical Society, 288, 1049.
19. Blandford, R. D., & Romani, R. W. (1988). Monthly Notices of Royal Astronomical Society, 234, 57.
20. Harding, A. K., Contopoulos, I., & Kazanas, D. (1999). Astrophysical Journal Letters, 525, L125.
21. Lyne, A., Graham-Smith, F., Weltevrede, P., et al. (2013). Science, 342, 598.
22. Chukwude, A. E., Baiden, A. A. and Onuchukwu, C. C. (2010). Astronomy & Astrophysics. 515, A21.
23. Johnston, S., & Galloway, D. (1999). Pulsar braking indices revisited. Monthly Notices of the Royal Astronomical Society, 306, L50–L54. https://doi.org/10.1046/j.1365- 8711.1999.02737.x
24. Livingstone, Margaret A., Kaspi, V. M., Gavriil, F. P., Manchester, R. N., Gotthelf, E. V. G., & Kuiper, L. (2007). New phase-coherent measurements of pulsar braking indices. Astrophysics and Space Science, 308, 317–323. https://doi.org/10.1007/s10509-007- 9320-3
25. Weltevrede, P., Johnston, S., & Espinoza, C. M. (2011). The glitch-induced identity changes of PSR J1119-6127 (Vol. 1357, pp. 109–112). Presented at the American Institute of Physics Conference Series. https://doi.org/10.1063/1.3615091
26. Clark, C. J., Pletsch, H. J., Wu, J., Guillemot, L., Camilo, F., Johnson, T. J., Nieder, L. (2016). The Braking Index of a Radio-quiet Gamma-Ray Pulsar. The Astrophysical Journal Letters, 832, L15. https://doi.org/10.3847/2041-8205/832/1/L15
27. Antonopoulou, D., Espinoza, C. M., Kuiper, L., & Andersson, N. (2017). Pulsar spin-down: the glitch-dominated rotation of PSR J0537−6910. Monthly Notices of the Royal Astronomical Society, 473 (2), 1644–1655. https://doi.org/10.1093/mnras/stx2429
28. Groth, E. J. (1975). Timing of the Crab Pular II. Method of Analysis. The Astrophysical Journal Supplement Series, 29. https://doi.org/10.1086/190353
29. Manchester, R. N., & Peterson, B. A. (1989). A braking index for PSR 0540-69. The Astrophysical Journal Letters, 342, L23–L25. https://doi.org/10.1086/185475
30. Nagase, F., Deeter, J., Lewis, W., Dotani, T., Makino, F., & Mitsuda, K. (1990). GINGA observations of the 50 millisecond pulsar PSR 0540 - 69. The Astrophysical Journal Letters, 351, L13–L16. https://doi.org/10.1086/185668
31. Lyne, A. G., Pritchard, R. S., & Graham-Smith, F. (1993). Twenty-Three Years of Crab Pulsar Rotational History. Monthly Notices of the Royal Astronomical Society, 265, 1003. https://doi.org/10.1093/mnras/265.4.1003
32. Parthasarathy A., et al., (2019). Monthly Notices of the Royal Astronomical Society, 489, 3810.
33. Parthasarathy A., et al., (2020). Monthly Notices of the Royal Astronomical Society, 494, 2012.
34. Shapiro, S. L., Teukolsky, S. A., & Wasserman, I. (1983). Implications of the millisecond pulsar for neutron star models. Astrophysical Journal, 272, 702–707. https://doi.org/10.1086/161332
35. McKenna, J., and Lyne, A. G. PSRI737 – 30 and period discontinues in young pulsars. Nature, 343, 1990, 349–350.
36. Allen, M. P. and Horvath, J. E. (1997) Glitches, Torque Evolution and the Dynamics of Young Pulsars. Monthly Notices of the Royal Astronomical Society, 287, 615-621. https://doi.org/10.1093/mnras/287.3.615
37. Lyne, A. G., Pritchard, R. S., & Smith, F. G. (1988). Crab pulsar timing 1982-87. Monthly Notices of the Royal Astronomical Society, 233, 667–676. https://doi.org/10.1093/mnras/233.3.667
38. Press WH, Teukolsky SA, Vetterling WT, Flannery BP, Numerical Recipes in Fortran: The Art of Scientific Computing (Cambridge University Press, Cambridge, UK, 1994).
39. Espinoza, C. M., Lyne, A. G., & Stappers, B. W. (2017). New long-term braking index measurements for glitching pulsars using a glitch-template method. Monthly Notices of the Royal Astronomical Society, 466, 147–162. https://doi.org/10.1093/mnras/stw3081
40. Alpar, M. A., & Baykal, A. (1994). Expectancy of Large Pulsar Glitches - a Comparison of Models with the Observed Glitch Sample. Monthly Notices of the Royal Astronomical Society, 269, 849. https://doi.org/10.1093/mnras/269.4.849
41. Archibald, R. F., Gotthelf, E. V., Ferdman, R. D., Kaspi, V. M., Guillot, S., Harrison, F. A., Tomsick, J. A. (2016). A High Braking Index for a Pulsar. The Astrophysical Journal Letters, 819 (1), L16. https://doi.org/10.3847/2041-8205/819/1/L16
42. Shannon, R. M., Lentati, L. T., Kerr, M., Johnston, S., Hobbs, G., & Manchester, R. N. (2016). Characterizing the rotational irregularities of the Vela pulsar from 21 yr of phase-coherent timing. Monthly Notices of the Royal Astronomical Society, 459, 3104–3111. https://doi.org/10.109
43. Espinoza, C. M., Lyne, A. G., Stappers, B. W. and Kramer, M. (2011). A study of 315 glitches in the rotation of 102 pulsars. Mon. Not. R. Astron. Soc., 414, 1679-1704.
44. Hobbs, G., Lyne, A. G., and Kramar M. An analysis of the timing irregularities for 366 pulsars. Mon. Not. R. Astron. Soc., 402, 2010, 1027-1048.