Research Article | | Peer-Reviewed

Modeling Galactic Oxygen Enrichment via the NOFNe Cycle in Halo and Disk Stars

Received: 5 December 2025     Accepted: 22 December 2025     Published: 20 January 2026
Views:       Downloads:
Abstract

We present a theoretical analysis of oxygen abundances in a sample of 67 metal-poor field stars belonging to the Galactic halo and disk populations. The primary objective of this study is to investigate whether proton-capture nucleosynthesis pathways can reproduce the observed oxygen abundance trends in metal-poor stellar environments. Oxygen abundances,[O/H]LTE, are derived under the assumption of local thermodynamic equilibrium. The NOFNe nuclear reaction cycle is modelled under advanced stellar burning conditions, spanning temperatures of 1 × 108–3.5 × 108 K and a characteristic density of 102 g cm−3. Enhanced stellar atmosphere models and refined abundance calculations yield excellent agreement with reported values, with mean absolute deviations in the range 0.00–0.02 dex. The calculations further reveal subtle but systematic variations in oxygen abundance associated with changes in hydrogen (XH) and oxygen (XO) mass fractions. For the full sample, we obtain a mean oxygen abundance of <[O/H]> = −0.49 dex with a mean absolute deviation of 0.19 dex, consistent with expectations for metal-poor stellar populations. Distinct abundance signatures are identified among thick-disk, high-α, and low-α halo stars, reflecting differences in their nucleosynthetic histories and formation pathways. These results provide important constraints on oxygen synthesis in massive stars and supernovae and support a role for proton-capture reactions within the NOFNe cycle, together with rotationally induced mass loss, in shaping the observed surface oxygen abundances. Overall, this study offers new insights into Galactic chemical evolution and the assembly history of the stellar halo.

Published in International Journal of Astrophysics and Space Science (Volume 14, Issue 1)
DOI 10.11648/j.ijass.20261401.11
Page(s) 1-13
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2026. Published by Science Publishing Group

Keywords

H-burning, Proton-Capture, Metallicity, Nucleosynthesis, NOFNe Cycle

References
[1] A. G. Bruzual,Star clusters as simple stellar populations, Philos. Trans. R. Soc. A 368, 783–799 (2010),
[2] W. E. Harris, Globular cluster systems in galaxies beyond the Local Group, Annu. Rev. Astron. Astrophys. 29, 543–579 (1991),
[3] E. Carretta, A. Bragaglia, R. G. Gratton, S. Lucatello, G. Catanzaro, F. Leone, M. Bellazzini, R. Claudi, V. D’Orazi, Y. Momany et al., Na-O anticorrelation and HB: VII. The chemical composition of first and second-generation stars in 15 globular clusters from GIRAFFE spectra, Astron. Astrophys. 505, 117–138 (2009),
[4] R. G. Gratton, E. Carretta, and A. Bragaglia, Multiple populations in globular clusters: Lessons learned from the Milky Way globular clusters, Astron. Astrophys. Rev. 20, 50 (2012),
[5] S. Villanova, D. Geisler, R. G. Gratton, and S. Cassisi, The metallicity spread and the age–metallicity relation of ω Centauri, Astrophys. J. 791, 107 (2014),
[6] G. Busso, S. Cassisi, G. Piotto, M. Castellani,M. Romaniello, M. Catelan, S. G. Djorgovski, A. Recio-Blanco, A. Renzini, et al. The peculiar horizontal branch morphology of the Galactic globular clusters NGC 6388 and NGC 6441: new insights from UV observations, Astron. Astrophys. 474, 105–119 (2007),
[7] S. Villanova, G. Piotto, A. F. Marino, A. P. Milone,A. Bellini, L. R. Bedin, Y. Momany, and A. Renzini, The multipopulation phenomenon in Galactic globular clusters: M4 and M22, Proc. Int. Astron. Union 5, 326–332 (2009),
[8] N. Bastian and C. Lardo, Multiple stellar populations in globular clusters, Annu. Rev. Astron. Astrophys. 56, 83–136 (2018),
[9] R. Gratton, A. Bragaglia, E. Carretta, V. D’Orazi,S. Lucatello, and A. Sollima, What is a globular cluster?An observational perspective, Astron. Astrophys. Rev. 27, 8 (2019),
[10] C. Lardo, M. Salaris, S. Cassisi, and N. Bastian, Confirmation of a metallicity spread amongst first population stars in globular clusters, Astron. Astrophys. 662, A117 (2022),
[11] T. Decressin, G. Meynet, C. Charbonnel, N. Prantzos, and S. Ekström, Fast rotating massive stars and the origin of the abundance patterns in galactic globular clusters, Astron. Astrophys. 464, 1029–1044 (2007),
[12] P. A. Denissenkov, D. A. VandenBerg, F. D. A. Hartwick,F. Herwig, A. Weiss, and B. Paxton, The primordial and evolutionary abundance variations in globular-cluster stars: a problem with two unknowns, Mon. Not. R. Astron. Soc. 448, 3314–3324 (2015),
[13] A. Kuruvanthodi, D. Schaerer, M. Messa, A. Adamo,C. Usher, C. Charbonnel, and R. Marques-Chaves, Search strategies for supermassive stars in young clusters and application to nearby galaxies, Astron. Astrophys. 674, A140 (2023),
[14] K. Nomoto, C. Kobayashi, and N. Tominaga, Nucleosynthesis in stars and the chemical enrichment of galaxies, Annu. Rev. Astron. Astrophys. 51, 457–509 (2013),
[15] F. Matteucci, Chemical evolution of galaxies, Astronomy and Astrophysics Library, Springer, Berlin (2012),
[16] B. M. Tinsley, Evolution of the stars and gas in galaxies, Astrophys. J. 151, 547 (1968),
[17] T. Nakamura, H. Umeda, K. Nomoto, F.-K. Thielemann, and A. Burrows, Nucleosynthesis in Type II supernovae and the abundances in metal-poor stars, Astrophys. J. 517, 193–208 (1999),
[18] R. Gratton, C. Sneden, and E. Carretta, Abundance variations within globular clusters, Annu. Rev. Astron. Astrophys. 42, 385–440 (2004),
[19] B. S. Meyer, L. R. Nittler, A. N. Nguyen, andS. Messenger, Nucleosynthesis and chemical evolution of oxygen, Rev. Mineral. Geochem. 68, 31–53 (2008),
[20] M. Asplund, N. Grevesse, A. J. Sauval, and P. Scott, The chemical composition of the Sun, Annu. Rev. Astron. Astrophys. 47, 481–522 (2009),
[21] C. Sneden, R. P. Kraft, C. F. Prosser, and G. E. Langer, Oxygen abundances in halo giants. III - Giants in the mildly metal-poor globular cluster M5, Astron. J. 104, 2121 (1992),
[22] D. Yong, B. W. Carney, and M. L. T. de Almeida, Elemental abundance ratios in stars of the outer Galactic disk. I. Open clusters, Astron. J. 130, 597–625 (2005),
[23] A. Savino, D. Massari, A. Bragaglia, E. Dalessandro, andE. Tolstoy, M13 multiple stellar populations seen with the eyes of Strömgren photometry, Mon. Not. R. Astron. Soc. 474, 4438–4446 (2017),
[24] P. Ventura and P. Marigo, Asymptotic giant branch stars at low metallicity: the challenging interplay between the mass-loss and molecular opacities: Mass-loss and opacities in AGB modelling, Mon. Not. R. Astron. Soc. 408, 2476–2486 (2010),
[25] G. Fragione and F. Antonini, Massive binary star mergers in galactic nuclei: implications for blue stragglers, binaryS- stars, and gravitational waves, Mon. Not. R. Astron. Soc. 488, 728–738 (2019),
[26] C. Lardo, E. Pancino, M. Bellazzini, A. Bragaglia,P. Donati, G. Gilmore, S. Randich, S. Feltzing, R. D. Jeffries, A. Vallenari, et al. The Gaia-ESO Survey: Kinematics of seven Galactic globular clusters, Astron. Astrophys. 573, A115 (2015),
[27] G. C. Myeong, N. W. Evans, V. Belokurov, J. L. Sanders, and S. E. Koposov, The Sausage Globular Clusters, Astrophys. J. Lett. 863, L28 (2018),
[28] G. Tautvaišienė, B. Edvardsson, E. Puzeras, and I. Ilyin, Chemical composition of evolved stars in the open cluster NGC 7789, Astron. Astrophys. 431, 933–942 (2005),
[29] S. Cassisi, M. Salaris, and G. Bono, The shape of the red giant branch bump as a diagnostic of partial mixing processes in low-mass stars, Astrophys. J. 565, 1231–1238 (2002),
[30] G. Carraro, D. Geisler, S. Villanova, P. M. Frinchaboy, and S. R. Majewski, Old open clusters in the outer Galactic disk, Astron. Astrophys. 476, 217–227 (2007),
[31] G. Tautvaišienė, A. Drazdauskas, A. Bragaglia,S. Randich, and R. Ženovienė, CNO abundances and carbon isotope ratios in evolved stars of the open clusters NGC 2324, NGC 2477, and NGC 3960, Astron. Astrophys. 595, A16 (2016),
[32] L. Magrini, S. Randich, G. Kordopatis, N. Prantzos, D. Romano, V. Adibekyan, M. Bergemann, K. Cunha, P. de Laverny, A. Recio-Blanco, Š. Mikolaitis, F. Matteucci,V. Silva Aguirre, and O. Snaith, Open clusters towards the Galactic centre: chemistry and dynamics, Astron. Astrophys., 523, A11, 2010.
[33] A. B. S. Reddy, D. L. Lambert, and G. Gonzalez, Comprehensive abundance analysis of red giants in the anticentre open clusters NGC 6791, NGC 6819, NGC 7789, Mon. Not. R. Astron. Soc., 431, 3338–3351, 2013.
[34] M. Salaris, S. Cassisi, A. Weiss, Red Giant Branch Stars: Theoretical Framework, Publications of the Astronomical Society of the Pacific, 114, 375–402, 2002.
[35] T. Rauscher, A. Heger, R. D. Hoffman, and S. E. Woosley, Nucleosynthesis in massive stars with improved nuclear and stellar physics, Astrophys. J. 576, 323–348 (2002),
[36] M. Salaris and S. Cassisi, Chemical element transport in stellar evolution models, R. Soc. Open Sci. 4, 170192 (2017),
[37] U. Mahanta, A. Goswami, H. Duorah, and K. Duorah,p- capture reaction cycles in rotating massive stars and their impact on elemental abundances in globular cluster stars: A case study of O, Na and Al, Res. Astron. Astrophys. 17, 080 (2017),
[38] F. Käppeler, R. Gallino, S. Bisterzo, and W. Aoki, The s process: Nuclear physics, stellar models, and observations, Rev. Mod. Phys. 83, 157–193 (2011),
[39] C. Iliadis, Nuclear physics of stars, Wiley, (2007),
[40] M. Salaris and S. Cassisi, Evolution of stars and stellar populations, Wiley, (2005),
[41] P. A. Denissenkov and C. A. Tout, On a physical mechanism for extra mixing in globular cluster red giants, Mon. Not. R. Astron. Soc. 316, 395–406 (2000),
[42] J.-W. Lee and B. W. Carney, Chemical abundances of three metal-poor globular clusters (NGC 6287, NGC 6293, and NGC 6541) in the inner halo, Astron. J. 124, 1511–1527 (2002),
[43] S. Cristallo, O. Straniero, L. Piersanti, and D. Gobrecht, Evolution, nucleosynthesis, and yields of AGB stars at different metallicities. III. Intermediate-mass models, revised low-mass models, and the pH-FRUITY interface, Astrophys. J. Suppl. Ser. 219, 40 (2015),
[44] S. A. Heap, R. J. Stancliffe, J. C. Lattanzio, andD. S. P. Dearborn, Three-dimensional modelling of proton ingestion episodes in low-mass stars, AIP Conf. Proc., 367–369 (2012),
[45] N. Mowlavi, A. Jorissen, and M. Arnould, Fluorine production in asymptotic giant branch stars, Symp. Int. Astron. Union 177, 459–462 (2000),
[46] K. Lodders, Solar system abundances and condensation temperatures of the elements, Astrophys. J. 591, 1220–1247 (2003),
[47] A. Best, S. Falahat, J. Görres, M. Couder, R. deBoer,A. Kontos, K.-L. Kratz, P. J. LeBlanc, Q. Li, S. O’Brien, K. Sonnabend, R. Talwar, E. Uberseder, and M. Wiescher, Low-energy resonances in the 14<\sup>N(α,γ)18<\sup>F reaction, Phys. Rev. C 87, 045805 (2013),
[48] C. Iliadis, R. Longland, A. E. Champagne, A. Coc, andR. Fitzgerald, Charged-particle thermonuclear reaction rates: II. Tables and graphs of reaction rates and probability density functions, Nucl. Phys. A 841, 31–250 (2010),
[49] C. G. Bruno, M. Aliotta, P. Descouvemont, A. Best,T. Davinson, D. Bemmerer, A. Boeltzig, C. Broggini, A. Caciolli, F. Cavanna, et al., Improved astrophysical rate for the 18<\sup>O(p,α) 15<\sup>N reaction by underground measurements, Phys. Lett. B 790, 237–242 (2019),
[50] Y. Xu, K. Takahashi, S. Goriely, M. Arnould, M. Ohta, and H. Utsunomiya, NACRE II: An update of the NACRE compilation of charged-particle-induced thermonuclear reaction rates for nuclei with mass number A < 16, Nucl. Phys. A 918, 61–169 (2013),
[51] R. Fang, J. Görres, R. J. deBoer, S. Moylan, A. T. Sanchez, T. L. Bailey, S. Carmichael, J. Koros,K. Lee, K. Manukyan, et al., Energy, strength, and α width measurements of Ec.m. = 1323 and 1487 keV resonances in 15N(α,γ)19F, Phys. Rev. C 110, 025806 (2024),
[52] L. Y. Zhang, J. J. He, A. Parikh, S. W. Xu, H. Yamaguchi,D. Kahl, S. Kubono, P. Mohr, J. Hu, P. Ma, et al., Thermonuclear 19F(p,α)16O reaction rate revised and astrophysical implications, Astrophys. J. 913, 44 (2021),
[53] D. R. Tilley, H. R. Weller, and C. M. Cheves, Energy levels of light nuclei A = 16-17, Nucl. Phys. A 564, 1–183 (1993),
[54] J. Frost-Schenk, P. Adsley, A. M. Laird, R. Longland,C. Angus, C. Barton, A. Choplin, C. Aa. Diget, R. Hirschi, C. Marshall, et al., The impact of 17<\sup>O + α reaction rate uncertainties on the s-process in rotating massive stars, Mon. Not. R. Astron. Soc. 514, 2650–2657 (2022),
[55] P. Mohr, Low-energy direct capture in the 16O(α,γ)20Ne reaction, Phys. Rev. C 72, 035803 (2005),
[56] C. Angulo, M. Arnould, M. Rayet, P. Descouvemont,D. Baye, C. Leclercq-Willain, A. Coc, S. Barhoumi, P. Aguer, et al., A compilation of charged-particle induced thermonuclear reaction rates, Nucl. Phys. A 656, 3–183 (1999),
[57] M. La Cognata, C. Spitaleri, and A. M. Mukhamedzhanov, Effect of high-energy resonances on the 18O(p,α)15N reaction rate at AGB and post-AGB relevant temperatures, Astrophys. J. 723, 1512–1522 (2010),
[58] M. Medhi, D. P. Mahanta, and U. Mahanta, Contribution of proton capture reactions to the abundances of phosphorus and sulfur in FGK stars, J. Astrophys. Astron. 44, 1 (2023),
[59] A. Talukdar, A. Rajbongshi, M. Medhi, and U. Mahanta, Impact of Proton-Capture Reaction Cycles on Isotopic Oxygen (16<\sup>O) Abundances in Stars from Galactic Open Clusters NGC 2324, NGC 2477, and NGC 3960, Am. J. Astron. Astrophys., 12, 112–125, 2025.
[60] D. D. Clayton, Principles of Stellar Evolution and Nucleosynthesis, Univ. Chicago Press, Chicago, 1983.
[61] I. Ramírez, J. Meléndez, and J. Chanamé, Oxygen abundances in low- and high-α field halo stars and the discovery of two field stars born in globular clusters, Astrophys. J. 757, 164 (2012),
Cite This Article
  • APA Style

    Sarma, S., Medhi, M., Talukdar, A., Talukdar, J., Mahanta, D., et al. (2026). Modeling Galactic Oxygen Enrichment via the NOFNe Cycle in Halo and Disk Stars. International Journal of Astrophysics and Space Science, 14(1), 1-13. https://doi.org/10.11648/j.ijass.20261401.11

    Copy | Download

    ACS Style

    Sarma, S.; Medhi, M.; Talukdar, A.; Talukdar, J.; Mahanta, D., et al. Modeling Galactic Oxygen Enrichment via the NOFNe Cycle in Halo and Disk Stars. Int. J. Astrophys. Space Sci. 2026, 14(1), 1-13. doi: 10.11648/j.ijass.20261401.11

    Copy | Download

    AMA Style

    Sarma S, Medhi M, Talukdar A, Talukdar J, Mahanta D, et al. Modeling Galactic Oxygen Enrichment via the NOFNe Cycle in Halo and Disk Stars. Int J Astrophys Space Sci. 2026;14(1):1-13. doi: 10.11648/j.ijass.20261401.11

    Copy | Download

  • @article{10.11648/j.ijass.20261401.11,
      author = {Swapnajyoti Sarma and Mrinmay Medhi and Apurba Talukdar and Jinturaj Talukdar and Devapratim Mahanta and Dhanjit Talukdar and Upakul Mahanta and Arup Bharali},
      title = {Modeling Galactic Oxygen Enrichment via the NOFNe Cycle in Halo and Disk Stars
    },
      journal = {International Journal of Astrophysics and Space Science},
      volume = {14},
      number = {1},
      pages = {1-13},
      doi = {10.11648/j.ijass.20261401.11},
      url = {https://doi.org/10.11648/j.ijass.20261401.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijass.20261401.11},
      abstract = {We present a theoretical analysis of oxygen abundances in a sample of 67 metal-poor field stars belonging to the Galactic halo and disk populations. The primary objective of this study is to investigate whether proton-capture nucleosynthesis pathways can reproduce the observed oxygen abundance trends in metal-poor stellar environments. Oxygen abundances,[O/H]LTE, are derived under the assumption of local thermodynamic equilibrium. The NOFNe nuclear reaction cycle is modelled under advanced stellar burning conditions, spanning temperatures of 1 × 108–3.5 × 108 K and a characteristic density of 102 g cm−3. Enhanced stellar atmosphere models and refined abundance calculations yield excellent agreement with reported values, with mean absolute deviations in the range 0.00–0.02 dex. The calculations further reveal subtle but systematic variations in oxygen abundance associated with changes in hydrogen (XH) and oxygen (XO) mass fractions. For the full sample, we obtain a mean oxygen abundance of  = −0.49 dex with a mean absolute deviation of 0.19 dex, consistent with expectations for metal-poor stellar populations. Distinct abundance signatures are identified among thick-disk, high-α, and low-α halo stars, reflecting differences in their nucleosynthetic histories and formation pathways. These results provide important constraints on oxygen synthesis in massive stars and supernovae and support a role for proton-capture reactions within the NOFNe cycle, together with rotationally induced mass loss, in shaping the observed surface oxygen abundances. Overall, this study offers new insights into Galactic chemical evolution and the assembly history of the stellar halo.
    },
     year = {2026}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Modeling Galactic Oxygen Enrichment via the NOFNe Cycle in Halo and Disk Stars
    
    AU  - Swapnajyoti Sarma
    AU  - Mrinmay Medhi
    AU  - Apurba Talukdar
    AU  - Jinturaj Talukdar
    AU  - Devapratim Mahanta
    AU  - Dhanjit Talukdar
    AU  - Upakul Mahanta
    AU  - Arup Bharali
    Y1  - 2026/01/20
    PY  - 2026
    N1  - https://doi.org/10.11648/j.ijass.20261401.11
    DO  - 10.11648/j.ijass.20261401.11
    T2  - International Journal of Astrophysics and Space Science
    JF  - International Journal of Astrophysics and Space Science
    JO  - International Journal of Astrophysics and Space Science
    SP  - 1
    EP  - 13
    PB  - Science Publishing Group
    SN  - 2376-7022
    UR  - https://doi.org/10.11648/j.ijass.20261401.11
    AB  - We present a theoretical analysis of oxygen abundances in a sample of 67 metal-poor field stars belonging to the Galactic halo and disk populations. The primary objective of this study is to investigate whether proton-capture nucleosynthesis pathways can reproduce the observed oxygen abundance trends in metal-poor stellar environments. Oxygen abundances,[O/H]LTE, are derived under the assumption of local thermodynamic equilibrium. The NOFNe nuclear reaction cycle is modelled under advanced stellar burning conditions, spanning temperatures of 1 × 108–3.5 × 108 K and a characteristic density of 102 g cm−3. Enhanced stellar atmosphere models and refined abundance calculations yield excellent agreement with reported values, with mean absolute deviations in the range 0.00–0.02 dex. The calculations further reveal subtle but systematic variations in oxygen abundance associated with changes in hydrogen (XH) and oxygen (XO) mass fractions. For the full sample, we obtain a mean oxygen abundance of  = −0.49 dex with a mean absolute deviation of 0.19 dex, consistent with expectations for metal-poor stellar populations. Distinct abundance signatures are identified among thick-disk, high-α, and low-α halo stars, reflecting differences in their nucleosynthetic histories and formation pathways. These results provide important constraints on oxygen synthesis in massive stars and supernovae and support a role for proton-capture reactions within the NOFNe cycle, together with rotationally induced mass loss, in shaping the observed surface oxygen abundances. Overall, this study offers new insights into Galactic chemical evolution and the assembly history of the stellar halo.
    
    VL  - 14
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • Sections