Volume 7, Issue 2, April 2019, Page: 27-32
New Models of Dark Energy Stars with Charge Distributions
Manuel Malaver, Bijective Physics Institute, Idrija, Slovenia; Department of Basic Sciences, Maritime University of the Caribbean, Catia la Mar, Venezuela
María Esculpi, Department of Applied Physics, Central University of Venezuela, Faculty of Engineering, Caracas, Venezuela
Megandhren Govender, Department of Mathematics, Statistical and Physics, Durban University of Technology, Durban, South Africa
Received: Jul. 15, 2019;       Accepted: Aug. 19, 2019;       Published: Sep. 2, 2019
DOI: 10.11648/j.ijass.20190702.12      View  27      Downloads  10
Abstract
In this paper, we have obtained a relativistic and spherically symmetric stellar configuration that describes an anisotropic fluid with a charge distribution that represents a potential model for a dark energy star and we specify particular forms in the gravitational potential and the electric field intensity which allows solve the Einstein-Maxwell field equations. The reason for proposing this model originates from the evidence that recent observational findings suggest that the universe has an accelerated cosmic expansion and the model of dark energy star is one of the most reasonable explanations of this phenomena. The field equations are integrated analytical and new stellar configurations are obtained are analyzed. For each these solutions we found that the radial pressure, the anisotropy factor, energy density, metric coefficients, mass function, charge density are regular and well behaved in the stellar interior. With the new solutions can be developed models of dark energy stars physically acceptable where the causality condition is not satisfied or the strong energy condition is violated. This model has a great application in the study of the fundamental theories of physics and cosmology. Several independent observations indicate that the greater part of the total energy density of the universe is in the form of dark energy and the rest in the form of nonbaryonic cold dark matter particles, but which have never been detected.
Keywords
Stellar Configuration, Gravitational Potential, Charge Distribution, Anisotropic Fluid, Accelerated Cosmic Expansion, Einstein-Maxwell Field Equations
To cite this article
Manuel Malaver, María Esculpi, Megandhren Govender, New Models of Dark Energy Stars with Charge Distributions, International Journal of Astrophysics and Space Science. Vol. 7, No. 2, 2019, pp. 27-32. doi: 10.11648/j.ijass.20190702.12
Copyright
Copyright © 2019 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
Sushkov. S. (2005). Wormholes supported by a phantom energy. Phys. Rev. D71, 043520.
[2]
Lobo, F. S. N. (2005). Stability of phantom wormholes. Phys. Rev. D71, 124022.
[3]
Lobo, F. S. N. (2006). Stable dark energy stars. Class. Quant. Grav. 23, 1525-1541.
[4]
Bibi, R., Feroze, T. and Siddiqui, A. (2016). Solution of the Einstein-Maxwell Equations with Anisotropic Negative Pressure as a Potential Model of a Dark Energy Star. Canadian Journal of Physics, 94 (8), 758-762.
[5]
Malaver, M. (2013). Black Holes, Wormholes and Dark Energy Stars in General Relativity. Lambert Academic Publishing, Berlin. ISBN: 978-3-659-34784-9.
[6]
Morris, M. S. and Thorne, K. S. (1988). Wormholes in spacetime and their use for interstellar travel: A tool for teaching general relativity Am. J. Phys. 56, 395-412.
[7]
Visser, M. (1995). Lorentzian wormholes: From Einstein to Hawking. AIP Press, New York.
[8]
Schwarzschild, K. (1916). Uber das Gravitationsfeld einer Kugel aus inkompressibler Flussigkeit nach der Einsteinschen Theorie. Math. Phys. Tech, 424-434.
[9]
Tolman, R. C. (1939). Static Solutions of Einstein's Field Equations for Spheres of Fluid. Phys. Rev., 55 (4), 364-373.
[10]
Oppenheimer, J. R. and Volkoff, G. (1939). On Massive Neutron Cores. Phys. Rev., 55 (4), 374-381.
[11]
Astrophys. J, 74, 81-82. The Maximum Mass of Ideal White Dwarfs Chandrasekhar, S. (1931)
[12]
Baade, W. and Zwicky, F. (1934). On Super-novae. Proc. Nat. Acad. Sci. U. S 20 (5), 254-259.
[13]
Chapline, G. (2004). Dark Energy Stars. Proceedings of the Texas Conference on Relativistic Astrophysics, 12-17 Stanford.
[14]
Lobo, F. S. N. and Crawford, P. (2005). Stability analysis of dynamic thin shells. Class. Quant. Grav, 22, 4869-4886.
[15]
Chan, R., da Silva, M. A. F. and Villas da Rocha, J. F. (2009). On Anisotropic Dark Energy. Mod. Phys. Lett A24, 1137-1146.
[16]
Malaver, M. and Esculpi, M. (2013). A Theoretical Model of Stable Dark Energy Stars. IJRRAS, 14 (1), 26-39.
[17]
Cosenza, M., Herrera, L., Esculpi, M. and Witten, L. (1981). Some Models of Anisotropic Spheres in General Relativity, J. Math. Phys, 22 (1), 118.
[18]
Gokhroo, M. K. and Mehra, A. L. (1994). Anisotropic Spheres with Variable Energy Density in General Relativity. Gen. Relat. Grav, 26 (1), 75 -84.
[19]
Esculpi, M., Malaver, M. and Aloma, E. (2007). A Comparative Analysis of the Adiabatic Stability of Anisotropic Spherically Symmetric solutions in General Relativity. Gen. Relat. Grav, 39 (5), 633-652.
[20]
Malaver, M. (2018). Generalized Nonsingular Model for Compact Stars Electrically Charged. World Scientific News, 92 (2), 327-339.
[21]
Malaver, M. (2018). Some new models of anisotropic compact stars with quadratic equation of state. World Scientific News, 109, 180-194.
[22]
Chan R., Herrera L. and Santos N. O. (1992). Dynamical instability in the collapse of anisotropic matter. Class. Quantum Grav, 9 (10), L133.
[23]
Malaver, M. (2017). New Mathematical Models of Compact Stars with Charge Distributions. International Journal of Systems Science and Applied Mathematics, 2 (5), 93-98.
[24]
Cosenza M., Herrera L., Esculpi M. and Witten L. (1982). Evolution of radiating anisotropic spheres in general relativity. Phys. Rev. D, 25 (10), 2527-2535.
[25]
Herrera L. (1992). Cracking of self-gravitating compact objects. Phys. Lett. A, 165, 206-210.
[26]
Herrera L. and Ponce de Leon J. (1985). Perfect fluid spheres admitting a one‐parameter group of conformal motions. J. Math. Phys, 26, 778.
[27]
Herrera L. and Nunez L. (1989). Modeling 'hydrodynamic phase transitions' in a radiating spherically symmetric distribution of matter. The Astrophysical Journal, 339 (1), 339-353.
[28]
Herrera L., Ruggeri G. J. and Witten L. (1979). Adiabatic Contraction of Anisotropic Spheres in General Relativity. The Astrophysical Journal, 234, 1094-1099.
[29]
Herrera L., Jimenez L., Leal L., Ponce de Leon J., Esculpi M and Galina V. (1984). Anisotropic fluids and conformal motions in general relativity. J. Math. Phys, 25, 3274.
[30]
Bowers, R. L. and Liang, E. P. T. (1974). Anisotropic Spheres in General Relativity, The Astrophysical Journal, 188, 657-665.
[31]
Sokolov. A. I. (1980). Phase transitions in a superfluid neutron liquid. Sov. Phys. JETP, 52 (4), 575-576.
[32]
Usov, V. V. (2004). Electric fields at the quark surface of strange stars in the color- flavor locked phase. Phys. Rev. D, 70 (6), 067301.
[33]
Komathiraj, K. and Maharaj, S. D. (2008). Classes of exact Einstein-Maxwell solutions, Gen. Rel. Grav. 39 (12), 2079-2093.
[34]
Thirukkanesh, S. and Maharaj, S. D. (2008). Charged anisotropic matter with a linear equation of state. Class. Quantum Gravity, 25 (23), 235001.
[35]
Maharaj, S. D., Sunzu, J. M. and Ray, S. (2014). Some simple models for quark stars. Eur. Phys. J. Plus, 129, 3.
[36]
Thirukkanesh, S. and Ragel, F. C. (2013). A class of exact strange quark star model. PRAMANA-Journal of physics, 81 (2), 275-286.
[37]
Thirukkanesh, S. and Ragel, F. C. (2012). Exact anisotropic sphere with polytropic equation of state. PRAMANA-Journal of physics, 78 (5), 687-696.
[38]
Feroze, T. and Siddiqui, A. (2011). Charged anisotropic matter with quadratic equation of state. Gen. Rel. Grav, 43, 1025-1035.
[39]
Feroze, T. and Siddiqui, A. (2014). Some Exact Solutions of the Einstein-Maxwell Equations with a Quadratic Equation of State. Journal of the Korean Physical Society, 65 (6), 944-947.
[40]
Sunzu, J. M, Maharaj, S. D., Ray, S. (2014). Quark star model with charged anisotropic matter. Astrophysics. Space. Sci, 354, 517-524.
[41]
Pant, N., Pradhan, N., Malaver, M. (2015). Anisotropic fluid star model in isotropic coordinates. International Journal of Astrophysics and Space Science. Special Issue: Compact Objects in General Relativity. 3 (1), 1-5.
[42]
Malaver, M. (2014). Strange Quark Star Model with Quadratic Equation of State. Frontiers of Mathematics and Its Applications, 1 (1), 9-15.
[43]
Malaver, M. (2018). Charged anisotropic models in a modified Tolman IV spacetime. World Scientific News, 101, 31-43.
[44]
Malaver, M. (2018). Charged stellar model with a prescribed form of metric function y (x) in a Tolman VII spacetime. World Scientific News, 108, 41-52.
[45]
Malaver, M. (2016). Classes of relativistic stars with quadratic equation of state. World Scientific News, 57, 70-80.
[46]
Durgapal, M. C., Bannerji, R. (1983). New analytical stellar model in general relativity. Phys. Rev. D27, 328-331.
[47]
Takisa, P. M., Maharaj, S. D. (2013). Some charged polytropic models. Gen. Rel. Grav, 45, 1951-1969.
Browse journals by subject