Volume 7, Issue 4, August 2019, Page: 45-49
The Dynamics of the Neutron Complexes: From Neutron Star to Black Hole
Yuriy Nikolaevich Zayko, Russian Presidential Academy of National Economy and Public Administration, Stolypin Volga Region Institute, Saratov, Russia
Received: Jun. 27, 2019;       Accepted: Sep. 28, 2019;       Published: Oct. 11, 2019
DOI: 10.11648/j.ijass.20190704.11      View  54      Downloads  8
The mechanism of the appearance of neutron complexes, which at the final stage of their development, evolve into neutron stars, is described. It is shown that for a quantitative description it is necessary to use a generalization of the Newton-Schrödinger equations taking into account the next terms in the decomposition of explicit Dirac – Maxwell equations on c-2. In this approximation, the problem is described by the well-known Gross-Pitaevskii equation, the numerical analysis of which is performed for the spherically symmetric case. The result depends on the value of the parameter α equal to the ratio of the gravitational radius of the neutron complex to twice the Compton wavelength. For small values of α <0.5, the solutions describe a neutron star; for α > 0.5, the description corresponds to its gravitational collapse. This is consistent with the analysis of the general 3-dimensional case.
Schrödinger-Newton Equations, Gravitational Potential, Neutron Star, Bosonic Condensate, Gross-Pitaevskii Equation
To cite this article
Yuriy Nikolaevich Zayko, The Dynamics of the Neutron Complexes: From Neutron Star to Black Hole, International Journal of Astrophysics and Space Science. Vol. 7, No. 4, 2019, pp. 45-49. doi: 10.11648/j.ijass.20190704.11
Copyright © 2019 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Yu. N. Zayko, Calculation of the Effective Gravitational Charge using the Newton-Schrödinger Equations, International Journal of Scientific and Innovative Mathematical Research (IJSIMR) V. 7, № 6, 2019, PP 17-22.
R. Harrison, I. Moroz and K. P. Tod, A numerical study of the Schrődinger –Newton equations, Nonlinearity 16, (2003), pp. 101–122.
L. D. Landau, E. M. Lifshitz (1977). Quantum Mechanics: Non-Relativistic Theory. Vol. 3 (3rd ed.), Pergamon Press.
V. B. Berestetskii, E. M. Lifshitz, L. P. Pitaevskii (1971). Relativistic Quantum Theory. Vol. 4 (1st ed.), Pergamon Press.
A. D. Polyanin, V. F. Zaitsev. Handbook of Nonlinear Partial Differential Equations, (Handbooks of Mathematical Equations), 2nd Edition, Chapman and Hall/CRC, 2011.
R. Penrose, On gravity’s role in quantum state reduction, Gen. Rel. Grav. 28 (1996) pp. 581-600.
R. Penrose, Quantum computation, entanglement and state reduction, Phil. Trans. R. Soc. (London) A 356 (1998) 1927.
I. M. Moroz, R. Penrose, and P. Tod, Spherically-symmetric solutions of the Schrődinger–Newton equations, Class. Quantum Grav. 15 (1998) 2733–2742.
L. D. Landau, E. M. Lifshitz (1980). Statistical Physics. Vol. 5 (3rd ed.). Butterworth-Heinemann.
E. M. Lifshitz, L. P. Pitaevskii (1980). Statistical Physics, Part 2: Theory of the Condensed State. Vol. 9 (1st ed.). Butterworth-Heinemann.
R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, H. C. Morris, Solitons and Nonlinear Wave Equations (1982), Academic Press Inc., (London).
W. A. Strauss (1978) Nonlinear Invariant Wave Equations, In Velo G and Wightman A (Ed.), Invariant Wave Equations, Berlin, Springer-Verlag.
P. S. Lomdahl, O. H. Olsen and P. L. Christiansen (1980) Return and Collapse of Solutions to the Nonlinear Schrӧdinger Equation in Cylindrical Symmetry, Phys. Lett., 78A, 125-128.
K. Konno and H. Suzuki (1979) Self-focusing of Laser Beam in Nonlinear Media, Physica Scripta, 20, 382-386.
V. E. Zakharov and V. S. Synakh (1975) The Nature of the Self-focusing Singularity, Zh. Eksp. Teor. Fiz. 68, 940-94.
M. Rozner and V. Desjacques (2018) Backreaction of Axion Coherent Oscillations, arXiv: 1804.10417v1 [astro-ph.CO] 27 Apr 2018.
J. Eby, M. Leembruggen, L. Street, P. Suranyi, and L. C. R. Wijewardhana (2019) Global View of QCD Axion Stars, arXiv: 1905.00981v3 [hep-ph] 9 Sep 2019.
J. R. Lonnborn, A. Melatos, and B. Haskell (2019) Collective, Glitch-like Vortex Motion in a Neutron Star with an Annular Pinning Barrier, arXiv: 1905.02877v1 [astro-ph.HE] 8 May 2019.
T. Harko (2019) Jeans Instability and Turbulent Gravitational Collapse of Bose-Einstein Condensate Dark Matter Halos arXiv: 1909.05022v1 [gr-qc] 9 Sep 2019.
S. Sarkar, C. Vaz and L. C. R. Wijewardhana (2018) Gravitationally Bound Bose Condensates with Rotation, arXiv: 1711.01219v2 [astro-ph. GA] 15 May 2018.
Browse journals by subject