Interstellar Medium Parameters in Front of the External Bow Shock
Pavel Alexandrovich Sedykh
Issue:
Volume 7, Issue 2, April 2019
Pages:
12-17
Received:
15 July 2019
Accepted:
13 August 2019
Published:
26 August 2019
Abstract: We know that it is the front of the Earth’s bow shock where the solar wind kinetic energy flux is transformed into the other kinds the most intensively. In our previous studies, we obtained important relationships that enable calculating the key parameters at transition through the Earth’s bow shock front. One of the most important sources of information on physical processes at the heliosphere boundary are the Voyager 1 and 2 spacecrafts. Since both the solar wind and interstellar medium are supersonic streams, two shocks are formed when flowing around the heliopause. The internal shock, in which the solar wind decelerates to subsonic velocity, is called the heliospheric shock. In the external bow shock, the interstellar gas supersonic flux is decelerated. The aim of this paper is to generalize the previously obtained equations to the processes in the external bow shock region. If Voyager-1 was equipped with a greater set of measuring instruments, we could have already provided estimations of the interstellar medium key parameters, and described in physical terms what this medium is, using relationships and equations from our studies.
Abstract: We know that it is the front of the Earth’s bow shock where the solar wind kinetic energy flux is transformed into the other kinds the most intensively. In our previous studies, we obtained important relationships that enable calculating the key parameters at transition through the Earth’s bow shock front. One of the most important sources of infor...
Show More
New Models of Dark Energy Stars with Charge Distributions
Manuel Malaver,
María Esculpi,
Megandhren Govender
Issue:
Volume 7, Issue 2, April 2019
Pages:
18-23
Received:
15 July 2019
Accepted:
19 August 2019
Published:
2 September 2019
Abstract: In this paper, we have obtained a relativistic and spherically symmetric stellar configuration that describes an anisotropic fluid with a charge distribution that represents a potential model for a dark energy star and we specify particular forms in the gravitational potential and the electric field intensity which allows solve the Einstein-Maxwell field equations. The reason for proposing this model originates from the evidence that recent observational findings suggest that the universe has an accelerated cosmic expansion and the model of dark energy star is one of the most reasonable explanations of this phenomena. The field equations are integrated analytical and new stellar configurations are obtained are analyzed. For each these solutions we found that the radial pressure, the anisotropy factor, energy density, metric coefficients, mass function, charge density are regular and well behaved in the stellar interior. With the new solutions can be developed models of dark energy stars physically acceptable where the causality condition is not satisfied or the strong energy condition is violated. This model has a great application in the study of the fundamental theories of physics and cosmology. Several independent observations indicate that the greater part of the total energy density of the universe is in the form of dark energy and the rest in the form of nonbaryonic cold dark matter particles, but which have never been detected.
Abstract: In this paper, we have obtained a relativistic and spherically symmetric stellar configuration that describes an anisotropic fluid with a charge distribution that represents a potential model for a dark energy star and we specify particular forms in the gravitational potential and the electric field intensity which allows solve the Einstein-Maxwell...
Show More